Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 2 de 2
Фильтр
1.
PLoS One ; 17(10): e0271931, 2022.
Статья в английский | MEDLINE | ID: covidwho-2079704

Реферат

Consistent clinical observations of characteristic findings of COVID-19 pneumonia on chest X-rays have attracted the research community to strive to provide a fast and reliable method for screening suspected patients. Several machine learning algorithms have been proposed to find the abnormalities in the lungs using chest X-rays specific to COVID-19 pneumonia and distinguish them from other etiologies of pneumonia. However, despite the enormous magnitude of the pandemic, there are very few instances of public databases of COVID-19 pneumonia, and to the best of our knowledge, there is no database with annotation of abnormalities on the chest X-rays of COVID-19 affected patients. Annotated databases of X-rays can be of significant value in the design and development of algorithms for disease prediction. Further, explainability analysis for the performance of existing or new deep learning algorithms will be enhanced significantly with access to ground-truth abnormality annotations. The proposed COVID Abnormality Annotation for X-Rays (CAAXR) database is built upon the BIMCV-COVID19+ database which is a large-scale dataset containing COVID-19+ chest X-rays. The primary contribution of this study is the annotation of the abnormalities in over 1700 frontal chest X-rays. Further, we define protocols for semantic segmentation as well as classification for robust evaluation of algorithms. We provide benchmark results on the defined protocols using popular deep learning models such as DenseNet, ResNet, MobileNet, and VGG for classification, and UNet, SegNet, and Mask-RCNN for semantic segmentation. The classwise accuracy, sensitivity, and AUC-ROC scores are reported for the classification models, and the IoU and DICE scores are reported for the segmentation models.


Тема - темы
COVID-19 , Pneumonia , COVID-19/diagnostic imaging , Humans , Lung/diagnostic imaging , Neural Networks, Computer , X-Rays
2.
Sci Rep ; 11(1): 23210, 2021 12 01.
Статья в английский | MEDLINE | ID: covidwho-1545637

Реферат

SARS-CoV2 pandemic exposed the limitations of artificial intelligence based medical imaging systems. Earlier in the pandemic, the absence of sufficient training data prevented effective deep learning (DL) solutions for the diagnosis of COVID-19 based on X-Ray data. Here, addressing the lacunae in existing literature and algorithms with the paucity of initial training data; we describe CovBaseAI, an explainable tool using an ensemble of three DL models and an expert decision system (EDS) for COVID-Pneumonia diagnosis, trained entirely on pre-COVID-19 datasets. The performance and explainability of CovBaseAI was primarily validated on two independent datasets. Firstly, 1401 randomly selected CxR from an Indian quarantine center to assess effectiveness in excluding radiological COVID-Pneumonia requiring higher care. Second, curated dataset; 434 RT-PCR positive cases and 471 non-COVID/Normal historical scans, to assess performance in advanced medical settings. CovBaseAI had an accuracy of 87% with a negative predictive value of 98% in the quarantine-center data. However, sensitivity was 0.66-0.90 taking RT-PCR/radiologist opinion as ground truth. This work provides new insights on the usage of EDS with DL methods and the ability of algorithms to confidently predict COVID-Pneumonia while reinforcing the established learning; that benchmarking based on RT-PCR may not serve as reliable ground truth in radiological diagnosis. Such tools can pave the path for multi-modal high throughput detection of COVID-Pneumonia in screening and referral.


Тема - темы
COVID-19/complications , Deep Learning , Expert Systems , Image Processing, Computer-Assisted/methods , Pneumonia/diagnosis , Radiography, Thoracic/methods , Tomography, X-Ray Computed/methods , Algorithms , COVID-19/virology , Humans , Incidence , India/epidemiology , Neural Networks, Computer , Pneumonia/diagnostic imaging , Pneumonia/epidemiology , Pneumonia/virology , Retrospective Studies , SARS-CoV-2/isolation & purification
Критерии поиска